Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast

نویسندگان

  • Michael Lentz
  • Chad Harris
چکیده

Brettanomyces yeasts are well-known as spoilage organisms in both the wine and beer industries, but also contribute important desirable characters to certain beer styles. These properties are mediated in large part by Brettanomyces' metabolism of hydroxycinnamic acids (HCAs) present in beverage raw materials. Here we compare growth inhibition by, and metabolism of, HCAs among commercial brewing strains and spoilage strains of B. bruxellensis and B. anomalus. These properties vary widely among the different strains tested and between the HCAs analyzed. Brewing strains showed more efficient metabolism of ferulic acid over p-coumaric acid, a trait not shared among the spoilage strains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolism of nonesterified and esterified hydroxycinnamic acids in red wines by Brettanomyces bruxellensis.

While Brettanomyces can metabolize nonesterified hydroxycinnamic acids found in grape musts/wines (caffeic, p-coumaric, and ferulic acids), it was not known whether this yeast could utilize the corresponding tartaric acid esters (caftaric, p-coutaric, and fertaric acids, respectively). Red wines from Washington and Oregon were inoculated with B. bruxellensis, while hydroxycinnamic acids were mo...

متن کامل

Comparative transcriptome assembly and genome-guided profiling for Brettanomyces bruxellensis LAMAP2480 during p-coumaric acid stress

Brettanomyces bruxellensis has been described as the main contaminant yeast in wine production, due to its ability to convert the hydroxycinnamic acids naturally present in the grape phenolic derivatives, into volatile phenols. Currently, there are no studies in B. bruxellensis which explains the resistance mechanisms to hydroxycinnamic acids, and in particular to p-coumaric acid which is direc...

متن کامل

Identification of Dekkera bruxellensis (Brettanomyces) from wine by fluorescence in situ hybridization using peptide nucleic acid probes.

A new fluorescence in situ hybridization method using peptide nucleic acid (PNA) probes for identification of Brettanomyces is described. The test is based on fluorescein-labeled PNA probes targeting a species-specific sequence of the rRNA of Dekkera bruxellensis. The PNA probes were applied to smears of colonies, and results were interpreted by fluorescence microscopy. The results obtained fro...

متن کامل

Single Cell Oil Production from Petroleum Sludge by Native Yeast Strains

In this research, 11 yeast strains with ability to grow on petroleum sludge were isolated from effluent of a petroleum refinery. Based on growth on mineral media contaminated petroleum sludge, two isolates were selected as the super strains. Meanwhile, results based on biochemical and morphological experiments on the strains indicated that the two selected isolates belonged to Candida and Proto...

متن کامل

PMKT2, a new killer toxin from Pichia membranifaciens, and its promising biotechnological properties for control of the spoilage yeast Brettanomyces bruxellensis.

Pichia membranifaciens CYC 1086 secretes a killer toxin (PMKT2) that is inhibitory to a variety of spoilage yeasts and fungi of agronomical interest. The killer toxin in the culture supernatant was concentrated by ultrafiltration and purified to homogeneity by two successive steps, including native electrophoresis and HPLC gel filtration. Biochemical characterization of the toxin showed it to b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015